Sunday, March 2, 2025

Ramadhan #1 - Sifat Mahmudah vs Sifat Mazmumah

Ikhlas vs Riya': Perbezaan dan Implikasinya

Ikhlas merupakan salah satu sifat mahmudah (terpuji) yang sangat penting dalam kehidupan seorang Muslim. Ia bermaksud melakukan sesuatu semata-mata kerana Allah tanpa mengharapkan sebarang balasan atau pujian daripada manusia. Sifat ini melahirkan keikhlasan hati dalam setiap amalan, menjadikan seseorang lebih tenang dan jauh daripada perasaan ingin menunjuk-nunjuk. Sebaliknya, riya’ ialah sifat mazmumah (tercela) yang merosakkan keikhlasan seseorang. Ia merujuk kepada perbuatan yang dilakukan bukan kerana Allah, tetapi untuk mendapatkan pengiktirafan atau pujian daripada manusia. Riya’ bukan sahaja menghilangkan keberkatan dalam amal ibadah, malah boleh membawa kepada kemurkaan Allah.

Maksud dan Kepentingan Ikhlas

Ikhlas berasal daripada perkataan Arab "ikhlās" yang bermaksud suci atau bersih. Dalam konteks Islam, ia merujuk kepada kesucian niat dalam setiap perbuatan, sama ada dalam ibadah, pekerjaan, atau urusan seharian. Ikhlas memastikan bahawa segala amalan diterima oleh Allah, sebagaimana firman-Nya dalam Surah Al-Bayyinah ayat 5:

"Dan mereka tidak diperintahkan melainkan supaya menyembah Allah dengan ikhlas dalam menjalankan agama yang lurus..."

Sifat ikhlas memberikan ketenangan jiwa dan mengelakkan seseorang daripada rasa kecewa jika tidak mendapat penghargaan daripada manusia. Orang yang ikhlas juga lebih fokus kepada usaha mereka kerana mereka yakin bahawa ganjaran sebenar datang daripada Allah, bukan daripada makhluk.

Maksud dan Bahaya Riya’

Riya’ berasal daripada perkataan Arab "ra`ā" yang bermaksud melihat atau memperlihatkan. Dari segi istilah, riya’ merujuk kepada sikap menunjuk-nunjuk dalam beribadah atau melakukan kebaikan demi mendapatkan pujian manusia. Sifat ini merupakan salah satu bentuk syirik kecil kerana ia menggantikan niat yang sepatutnya hanya untuk Allah dengan niat untuk mencari perhatian manusia.

Dalam sebuah hadis, Rasulullah SAW bersabda:

"Sesungguhnya perkara yang paling aku takuti terhadap kamu ialah syirik kecil." Para sahabat bertanya, "Apakah syirik kecil itu, wahai Rasulullah?" Baginda menjawab, "Riya’." (Hadis Riwayat Ahmad)

Riya’ boleh muncul dalam pelbagai bentuk. Contohnya, seseorang mungkin bersolat dengan penuh khusyuk apabila berada di hadapan orang ramai tetapi melakukannya secara sambil lewa ketika bersendirian. Ada juga yang bersedekah tetapi menghebahkannya supaya orang lain mengetahui. Sifat ini bukan sahaja menghilangkan pahala, malah boleh menyebabkan hati menjadi tidak tenang kerana sentiasa mengharapkan pengiktirafan daripada manusia.

Cara Menghindari Riya’ dan Memupuk Ikhlas

  1. Memperbetulkan niat – Sebelum melakukan sesuatu, individu perlu bertanya kepada diri sendiri sama ada ia dilakukan kerana Allah atau kerana manusia. Jika ada unsur riya’, segera perbetulkan niat.
  2. Menyembunyikan amal kebaikan – Seboleh mungkin, elakkan daripada menghebahkan amal kebaikan yang dilakukan, kecuali dalam keadaan yang boleh menjadi contoh kepada orang lain tanpa niat menunjuk-nunjuk.
  3. Berdoa kepada Allah – Mohon perlindungan daripada sifat riya’ dengan berdoa, seperti doa yang diajarkan oleh Rasulullah SAW:
    "Ya Allah, aku berlindung kepada-Mu daripada syirik yang aku sedari dan aku memohon keampunan-Mu atas apa yang aku tidak sedari."
  4. Mengingati bahawa pujian manusia tidak berkekalan – Pujian manusia hanyalah sementara, sedangkan ganjaran daripada Allah adalah kekal. Oleh itu, seseorang harus lebih mementingkan pandangan Allah daripada pandangan manusia.

Kesimpulan

Ikhlas dan riya’ merupakan dua sifat yang bertentangan, dengan ikhlas membawa keberkatan dan riya’ membawa kehancuran kepada amal ibadah seseorang. Sifat ikhlas menjadikan kehidupan lebih tenang kerana seseorang tidak bergantung kepada pengiktirafan manusia. Sebaliknya, riya’ menyebabkan seseorang hilang pahala dan hidup dalam ketidakpuasan kerana sentiasa mengharapkan pujian. Oleh itu, setiap individu harus berusaha untuk menanamkan keikhlasan dalam hati dan menjauhi sifat riya’ agar amalan mereka diterima oleh Allah serta membawa kebaikan di dunia dan akhirat.

Saturday, March 1, 2025

How OPC Foundation Generate Income.

The OPC Foundation is a non-profit organization that develops and maintains OPC (OLE for Process Control) standards, primarily OPC UA (Unified Architecture), which is widely used in industrial automation, IIoT, and energy systems.

How OPC Foundation Makes Money

Since it's a non-profit, OPC Foundation doesn't generate revenue like a typical for-profit business, but it sustains itself through several key sources:

  1. Membership Fees

    • Companies that want to participate in the development, testing, and certification of OPC standards pay an annual membership fee.
    • Membership is tiered:
      • Corporate Members (e.g., Siemens, Rockwell, ABB, Microsoft, etc.)
      • End-User Members (companies that use OPC standards in their industrial systems)
      • Associate Members (smaller firms, startups, or individuals)
    • Fees vary by membership level, with higher-tier members getting access to more benefits.
  2. Certification & Compliance Testing Fees

    • OPC Foundation certifies that software and hardware products meet OPC UA compliance standards.
    • Vendors pay testing and certification fees to have their OPC UA products verified by OPC-certified laboratories.
    • This ensures interoperability and quality, giving vendors an advantage in the market.
  3. Licensing & Intellectual Property (IP) Contributions

    • The OPC UA standard itself is open, but certain extensions, toolkits, or implementations may require licensing or usage agreements.
    • Some members contribute patents or IP related to OPC UA, which can be monetized in industry collaborations.
  4. Training & Workshops

    • OPC Foundation organizes training sessions, webinars, and workshops to educate developers and companies on OPC UA adoption.
    • Fees for attending these sessions generate revenue.
  5. Sponsorships & Partnerships

    • Large industrial companies (Siemens, Schneider, Microsoft, Honeywell, etc.) sponsor OPC Foundation events, research, and technical groups.
    • This funding supports standard development and outreach efforts.
  6. Government & Research Grants

    • Since OPC UA is a key industry standard for IIoT and digital transformation, governments and research institutions fund projects where OPC UA is a critical component.
    • Grants help OPC Foundation in R&D and global adoption initiatives.

Why Companies Pay OPC Foundation?

  • Access to OPC UA standards early before public release
  • Participation in working groups shaping the future of OPC
  • Interoperability certification boosts product adoption
  • Industry influence through collaboration with key players
  • Regulatory compliance (especially in industries like energy, manufacturing, and process control)

Even though OPC Foundation doesn’t make money like a typical company, its membership and certification model ensures long-term sustainability while promoting open and standardized industrial communication.

Would you like details on OPC UA's impact on energy systems or IIoT?

Wednesday, February 19, 2025

BIOS Programming Language

The BIOS (Basic Input/Output System) is typically programmed using low-level languages because it interacts directly with hardware and needs to run before an operating system is loaded. The most common languages used for BIOS development are:

1. Assembly Language (x86 Assembly)

  • Used for low-level hardware control and initialization.
  • Essential for early boot stages before higher-level languages can be used.
  • Example: BIOS interrupt calls (INT 13h for disk access, INT 10h for display control).

2. C Language

  • Used for more complex parts of the BIOS after the system has initialized enough hardware to support C execution.
  • Provides better readability and maintainability compared to Assembly.
  • Most modern BIOS/UEFI firmware is written in C.

3. UEFI BIOS – C and Assembly

  • Modern BIOS implementations use UEFI (Unified Extensible Firmware Interface) instead of traditional BIOS.
  • UEFI is primarily written in C with some Assembly for low-level hardware setup.
  • It follows the UEFI specification, which is typically implemented using EDK2 (EFI Development Kit 2), an open-source UEFI firmware development environment.

4. Scripting Languages for BIOS Configuration

  • Python, Perl, and Lua are sometimes used for BIOS testing and configuration automation.
  • Not used in the BIOS firmware itself but for development and debugging purposes.

Firmware Development Tools

  • TianoCore (EDK2): Open-source implementation of UEFI firmware.
  • GCC, LLVM/Clang, and Microsoft Visual Studio: Common compilers used for UEFI firmware development.

In summary, traditional BIOS firmware is mainly written in Assembly and C, while modern UEFI firmware is almost entirely written in C with minimal Assembly for early-stage initialization.

The primary computer languages used to design chips (integrated circuits)

The primary computer languages used to design chips (integrated circuits) are:

1. Hardware Description Languages (HDLs)

These languages are specifically designed to describe and model electronic circuits at various levels of abstraction.

VHDL (Very High-Speed Integrated Circuit Hardware Description Language)

Used for designing and simulating digital circuits.

Common in aerospace, defense, and ASIC development.


Verilog & SystemVerilog

Used for FPGA and ASIC design.

SystemVerilog extends Verilog with verification features.



2. Register Transfer Level (RTL) Design Languages

HDLs like VHDL and Verilog are often used at this level to describe how data flows between registers in a digital circuit.


3. High-Level Synthesis (HLS) Languages

C, C++, SystemC

Used in High-Level Synthesis (HLS) to convert high-level algorithmic descriptions into hardware designs.

SystemC is commonly used for system-level modeling.



4. Low-Level Programming for Chip Verification & Testing

Python, Perl, TCL, and Shell Scripting

Used for automation, verification, and testing of chip designs.


C & Assembly Language

Used for embedded systems and firmware development.



5. Analog and Mixed-Signal (AMS) Design Languages

SPICE (Simulation Program with Integrated Circuit Emphasis)

Used for simulating analog circuits and mixed-signal designs.


Verilog-AMS & VHDL-AMS

Used for designing circuits that involve both analog and digital components.



6. AI and Machine Learning for Chip Design

Python (TensorFlow, PyTorch) & MATLAB

Used in AI-driven chip design automation and optimization.



Each of these languages plays a critical role in different stages of chip design, from architecture definition to physical layout and verification.

Saturday, February 15, 2025

Design Philosophy for a 100MW/400MWh Grid-Scale BESS Aligned with SDGs.



**1. Site Selection**  
- **Grid Proximity & Accessibility**: Prioritize sites near substations/grid nodes to minimize transmission losses and ensure easy access for construction/maintenance.  
- **Environmental & Social Considerations**: Avoid ecologically sensitive areas, adhere to zoning laws, and engage communities to address concerns. Consider economic benefits like job creation.  
- **Safety & Topography**: Ensure safe distance from residential zones, assess terrain for drainage/foundation needs, and avoid flood-prone areas.  

**2. Building Layout**  
- **Modular & Scalable Design**: Arrange battery containers, inverters, and transformers with spacing for ventilation, fire safety, and maintenance. Plan for future expansion.  
- **Auxiliary Facilities**: Position control rooms, substations, and security infrastructure (fencing, surveillance) efficiently.  
- **Safety Zones**: Implement fire compartments and barriers to isolate potential hazards.  

**3. Civil Works**  
- **Site Preparation**: Conduct soil testing for foundation design, ensuring stability against environmental loads (wind/seismic). Include grading, drainage, and erosion control.  
- **Infrastructure**: Build access roads, fire protection systems (retention ponds), and secure foundations for heavy equipment.  
- **Sustainability**: Use recycled materials, rainwater harvesting, and replant vegetation to mitigate environmental impact.  

**4. Mechanical & Electrical (M&E) Systems**  
- **Thermal Management**: Deploy HVAC systems tailored to battery chemistry for optimal temperature control.  
- **Fire Safety**: Integrate aerosol-based suppression systems, sprinklers, and thermal monitoring.  
- **Electrical Infrastructure**:  
  - **Grid Integration**: Use high-efficiency inverters, transformers, and switchgear compliant with grid codes (voltage/frequency regulation).  
  - **Protection & Redundancy**: Install surge arresters, circuit breakers, and redundant systems for reliability.  
  - **SCADA & Cybersecurity**: Implement robust control systems with remote monitoring and encryption to safeguard against cyber threats.  

**5. Sustainability & SDG Alignment**  
- **Clean Energy**: Use renewables (e.g., solar) for auxiliary power and prioritize low-carbon battery chemistries.  
- **Circular Economy**: Plan for battery recycling/repurposing and minimize waste during construction.  
- **Climate Resilience**: Design for extreme weather and incorporate carbon-offset measures (e.g., tree planting).  

**6. Lifecycle & Compliance**  
- **Efficiency & Maintenance**: Optimize energy throughput, schedule predictive maintenance, and use modular systems for easy upgrades.  
- **Regulatory Adherence**: Meet international standards (e.g., IEC, NFPA) and local regulations for safety and environmental protection.  

**Conclusion**  
The design philosophy emphasizes sustainability, safety, and efficiency, ensuring the BESS supports SDGs 7 (Affordable Energy), 9 (Industry Innovation), and 13 (Climate Action). By integrating community engagement, advanced technologies, and circular economy principles, the project achieves grid resilience while minimizing ecological and social impacts.

Tuesday, February 11, 2025

Risk

The **FRM (Financial Risk Manager)** certification, administered by the **Global Association of Risk Professionals (GARP)**, focuses on **managing financial risks** in institutions like banks, asset management firms, and hedge funds. Below are key **FRM-related risks** covered in the curriculum and relevant to risk management professionals:

---

### **1. Market Risk**
   - **Definition**: Risk of losses due to changes in market prices (e.g., equities, interest rates, currencies, commodities).
   - **Examples**: 
     - Equity price fluctuations.
     - Interest rate volatility (e.g., bond price changes).
     - Foreign exchange (FX) risk.
   - **FRM Focus**: Value-at-Risk (VaR), stress testing, derivatives hedging, and scenario analysis.

---

### **2. Credit Risk**
   - **Definition**: Risk of loss from a borrower/counterparty failing to meet obligations (default).
   - **Examples**:
     - Loan defaults.
     - Counterparty risk in derivatives (e.g., swaps).
   - **FRM Focus**: Credit scoring models, credit derivatives (CDS), credit VaR, and portfolio risk management.

---

### **3. Operational Risk**
   - **Definition**: Losses from inadequate internal processes, systems, human errors, or external events.
   - **Examples**:
     - Fraud.
     - IT system failures.
     - Legal/regulatory penalties.
   - **FRM Focus**: Risk Control Self-Assessment (RCSA), Key Risk Indicators (KRIs), and Basel III operational risk frameworks.

---

### **4. Liquidity Risk**
   - **Definition**: Inability to meet short-term obligations (funding liquidity risk) or to exit positions without significant losses (market liquidity risk).
   - **Examples**:
     - Bank runs.
     - Illiquid asset holdings.
   - **FRM Focus**: Liquidity gap analysis, stress testing, and contingency funding plans.

---

### **5. Model Risk**
   - **Definition**: Risk of errors in financial models leading to incorrect decisions.
   - **Examples**:
     - Flawed pricing models for derivatives.
     - Incorrect risk parameter assumptions.
   - **FRM Focus**: Model validation, backtesting, and sensitivity analysis.

---

### **6. Systemic Risk**
   - **Definition**: Risk of collapse of an entire financial system due to interconnected institutions or markets.
   - **Examples**:
     - Contagion during the 2008 financial crisis.
   - **FRM Focus**: Macroprudential regulation, network analysis, and "too big to fail" frameworks.

---

### **7. Reputational Risk**
   - **Definition**: Damage to an institution’s reputation leading to loss of clients, revenue, or trust.
   - **Examples**:
     - Scandals (e.g., money laundering).
     - ESG-related controversies.
   - **FRM Focus**: Governance frameworks and stakeholder management.

---

### **8. Regulatory Risk**
   - **Definition**: Risk of legal penalties or operational restrictions due to non-compliance with regulations.
   - **Examples**:
     - Failing Basel III capital requirements.
     - GDPR/CCPA violations.
   - **FRM Focus**: Basel Accords, stress testing compliance, and regulatory reporting.

---

### **9. Strategic Risk**
   - **Definition**: Risk of losses from poor business decisions or failure to adapt to industry changes.
   - **Examples**:
     - Entering a risky market.
     - M&A failures.
   - **FRM Focus**: Scenario planning and risk-adjusted performance metrics (RAROC).

---

### **10. ESG (Environmental, Social, Governance) Risk**
   - **Definition**: Financial losses due to ESG factors (e.g., climate change, social inequality, poor governance).
   - **Examples**:
     - Stranded assets in fossil fuels.
     - Lawsuits over labor practices.
   - **FRM Focus**: Climate risk modeling and ESG integration into risk frameworks.

---

### **How FRM Addresses These Risks**
The FRM curriculum equips professionals with tools to:
   - Quantify risks using **statistical models** (e.g., VaR, Monte Carlo simulations).
   - Design **hedging strategies** (e.g., derivatives, diversification).
   - Implement **risk governance frameworks** (e.g., Basel III, COSO ERM).
   - Conduct **stress testing** and **scenario analysis**.
   - Align risk management with **regulatory requirements**.

---

The FRM certification is globally recognized and prepares professionals to tackle complex financial risks in roles such as **risk analysts, portfolio managers, and CROs (Chief Risk Officers)**.

Peranan Staf Residen Kolej (SRK) dalam Pembangunan Akhlak Pelajar.



Staf Residen Kolej (SRK) atau Felo Pembangunan Pelajar (FPP) memainkan peranan yang amat penting dalam membentuk akhlak dan sahsiah pelajar di institusi pengajian tinggi. Mereka bukan sahaja bertindak sebagai penasihat dan pembimbing, malah menjadi model peranan dalam membentuk nilai moral yang tinggi dalam kalangan pelajar. Beberapa aspek utama peranan SRK dalam pembangunan akhlak pelajar adalah seperti berikut:

1. Membimbing Pelajar ke Arah Kehidupan Berdisiplin

SRK bertanggungjawab dalam memastikan peraturan kolej dipatuhi oleh pelajar. Mereka membantu mengawasi dan menegakkan disiplin dengan menggalakkan budaya kepatuhan terhadap peraturan kolej, seperti etika berpakaian, tingkah laku sopan, serta larangan terhadap aktiviti yang boleh mencemarkan nama baik universiti. Dengan cara ini, pelajar dapat belajar mengenai kepentingan disiplin dalam kehidupan seharian.

2. Membangunkan Sikap Tanggungjawab dan Kepimpinan

SRK turut memainkan peranan dalam membimbing pelajar untuk menjadi individu yang bertanggungjawab. Mereka sering melibatkan pelajar dalam aktiviti kolej seperti program kesukarelawanan, kepimpinan, dan kebajikan, yang membantu pelajar memahami kepentingan berbakti kepada masyarakat serta mengasah kemahiran kepimpinan mereka.

3. Memberikan Sokongan dan Bimbingan Moral

Sebagai mentor, SRK sering menjadi tempat rujukan bagi pelajar yang menghadapi masalah peribadi, akademik, atau sosial. Dengan memberikan nasihat yang bersifat membina serta menyuntik nilai-nilai positif, mereka membantu pelajar dalam membuat keputusan yang bijak dan bertanggungjawab. Kehadiran SRK sebagai sumber bimbingan juga dapat mengelakkan pelajar daripada terjerumus dalam gejala sosial yang negatif.

4. Menjadi Model Peranan dalam Aspek Akhlak dan Profesionalisme

SRK sendiri perlu menunjukkan contoh teladan yang baik kepada pelajar dari segi etika kerja, adab berkomunikasi, dan cara menangani konflik. Dengan menunjukkan sikap profesionalisme dan nilai moral yang tinggi, mereka dapat mempengaruhi pelajar untuk mengamalkan sikap yang sama dalam kehidupan mereka.

5. Menggalakkan Budaya Kesepaduan dan Keharmonian

SRK berperanan dalam memastikan kehidupan di kolej berjalan dalam suasana yang harmoni dan saling menghormati antara satu sama lain. Mereka menggalakkan interaksi yang sihat dalam kalangan pelajar, tanpa mengira latar belakang dan kepercayaan. Ini membantu membentuk generasi pelajar yang lebih inklusif, berfikiran terbuka, dan bertolak ansur.

6. Memantau dan Mencegah Masalah Sosial

Sebagai pegawai pemantau, SRK bertanggungjawab untuk mengenal pasti dan menangani sebarang masalah sosial dalam kalangan pelajar, seperti penyalahgunaan dadah, buli, atau pergaulan bebas yang melampaui batas. Dengan mengadakan sesi perjumpaan dan pemantauan berkala, mereka dapat mengesan sebarang tingkah laku yang mencurigakan serta mengambil tindakan awal untuk membendung masalah tersebut.

Kesimpulannya, SRK memainkan peranan yang amat signifikan dalam membentuk akhlak pelajar di peringkat institusi pengajian tinggi. Dengan bimbingan yang berterusan, mereka bukan sahaja membantu dalam mencorakkan individu yang berakhlak mulia tetapi juga membina masyarakat pelajar yang berdisiplin, bertanggungjawab, dan berdaya saing dalam menghadapi cabaran kehidupan.

BESS layout

A Battery Energy Storage System (BESS) layout is a complex arrangement of components designed for efficiency, safety, and scalability. Below is a detailed breakdown of the key elements and considerations in a typical BESS layout:

---

### **1. Site Selection & Preparation**
- **Land Requirements**: Flat, stable terrain with proper drainage to prevent flooding. May require grading or foundations for heavy equipment.
- **Access Roads**: For installation, maintenance, and emergency vehicles.
- **Security**: Perimeter fencing, CCTV, and access control systems.
- **Environmental Compliance**: Noise barriers (for transformers/inverters), distance from residential areas, and spill containment (if applicable).

---

### **2. Core Components Layout**
#### **A. Battery Modules/Containers**
- **Configuration**: 
  - **Containerized Systems**: Prefabricated in shipping containers (20–40 ft), arranged in parallel rows with spacing for ventilation and fire safety.
  - **Rack-Mounted Systems**: Indoor/outdoor racks in dedicated buildings or enclosures.
- **Segregation**: Firewalls/barriers between modules to prevent thermal runaway propagation.
- **Orientation**: Optimized for airflow (if air-cooled) or proximity to cooling pipes (if liquid-cooled).

#### **B. Power Conversion System (PCS)**
- **Inverters/Converters**: Located near battery containers to minimize DC cable losses.
- **Transformers**: Step up voltage for grid connection; placed close to inverters but isolated for noise reduction.

#### **C. Switchgear & Protection**
- **Circuit Breakers/Relays**: Positioned between PCS and grid connection for fault isolation.
- **DC/AC Disconnects**: Accessible for emergency shutdowns.

---

### **3. Electrical Infrastructure**
- **Cabling**:
  - **DC Cables**: Short runs between battery racks and inverters to reduce losses.
  - **AC Cables**: Connect inverters to transformers and grid interconnection point.
  - **Separation**: DC and AC cables routed in separate conduits/trenches to avoid interference.
- **Grounding System**: Grid of grounding rods and conductors to ensure safety and lightning protection.

---

### **4. Thermal Management**
- **Cooling Systems**:
  - **Air-Cooled**: Battery racks spaced for airflow; HVAC units placed nearby.
  - **Liquid-Cooled**: Piping integrated into racks; chillers/heat exchangers located centrally.
- **Ventilation**: Required for hydrogen off-gassing (e.g., lead-acid batteries) or smoke evacuation.

---

### **5. Safety Systems**
- **Fire Suppression**:
  - **Gas-Based Systems** (e.g., Novec 1230) in battery enclosures.
  - **Sprinklers/Water Mist** in surrounding areas (NFPA 855 compliance).
- **Detection**: Smoke/heat sensors, gas detectors (e.g., for hydrogen or CO).
- **Emergency Access**: Clear evacuation routes and fire department access roads.

---

### **6. Control & Monitoring**
- **Control Room**: Houses SCADA, EMS (Energy Management System), and BMS (Battery Management System).
- **Communication**: Fiber-optic/ethernet cabling between sensors, inverters, and control systems.
- **Metering**: Revenue-grade meters at grid interconnection point.

---

### **7. Auxiliary Systems**
- **Lighting**: Site-wide LED lighting for security and maintenance.
- **Drainage**: Sloped surfaces and trenches to manage rainwater/coolant leaks.
- **Redundancy**: Backup power (e.g., diesel generators) for critical systems.

---

### **8. Design Considerations**
- **Scalability**: Modular layout to allow future expansion.
- **Maintenance Access**: Aisles wide enough for forklifts/personnel (minimum 3–4 ft).
- **Compliance**: Adherence to NFPA 855, IEC 62933, and local codes.
- **Noise Mitigation**: Sound barriers around transformers/inverters.

---

### **9. Example Layout (Containerized BESS)**
```
[Grid Interconnection]  
    ↑  
[Transformer Yard]  
    ↑  
[Switchgear]  
    ↑  
[Inverter/Converters] ←→ [Battery Containers (Rows 1–N)]  
    ↑  
[Control Building]  
    ↑  
[Access Road] [Cooling Units] [Fire Suppression Tanks]  
```

---

### **10. Emerging Trends**
- **Modular Design**: Plug-and-play containerized systems for rapid deployment.
- **Hybrid Cooling**: Combining air and liquid cooling for high-density systems.
- **AI Integration**: Predictive maintenance via real-time BMS data analytics.

---

This layout balances safety, efficiency, and adaptability, ensuring reliable operation across applications like grid stabilization, renewable integration, or peak shaving.

Design the standalone grid scale BESS

Designing a standalone grid-scale Battery Energy Storage System (BESS) requires a **holistic, multi-disciplinary framework** that integrates site selection, engineering design, regulatory compliance, and grid interconnection. Below is a step-by-step framework:

---

### **1. Site Selection & Feasibility Analysis**
#### **Key Considerations**:
- **Land Availability**: 
  - Flat, stable terrain with minimal environmental risks (e.g., flooding, seismic zones).
  - Proximity to grid infrastructure (substations, transmission lines).
- **Regulatory & Environmental**:
  - Compliance with local zoning laws, land-use permits, and environmental impact assessments (EIA).
  - Avoid ecologically sensitive areas (e.g., wetlands, habitats).
- **Grid Connection Feasibility**:
  - Assess grid capacity, voltage levels, and short-circuit current at the proposed connection point.
  - Proximity to renewable energy sources (if co-located with solar/wind).
- **Economic Factors**:
  - Land cost, tax incentives, and local labor availability.
  - Distance to transportation routes for equipment delivery.

---

### **2. System Sizing & Technology Selection**
- **BESS Capacity**: 
  - Define power (MW) and energy (MWh) requirements based on grid needs (e.g., peak shaving, frequency regulation, renewable integration).
- **Battery Chemistry**: 
  - Choose between lithium-ion (Li-ion), flow batteries, or other technologies based on cost, cycle life, and safety.
- **Inverter & Power Conversion System (PCS)**:
  - Select inverters compatible with grid voltage and frequency (e.g., 50 Hz in the Philippines).

---

### **3. Civil & Structural Engineering**
#### **Building Layout**:
- **Modular Design**:
  - Arrange battery containers, inverters, transformers, and control rooms in a modular layout for scalability.
  - Include firebreaks and safety buffer zones between units.
- **Foundations**:
  - Design reinforced concrete slabs to support heavy battery containers (e.g., 20–30 tons per container).
- **Drainage & Grading**:
  - Ensure proper stormwater management to prevent flooding.
- **Access Roads**:
  - Provide wide roads for fire trucks and maintenance vehicles.

---

### **4. Electrical Engineering Design**
#### **Key Components**:
- **Battery Array**:
  - Series/parallel configuration to meet voltage (e.g., 1500V DC) and capacity requirements.
- **Power Conversion System (PCS)**:
  - Convert DC battery output to AC grid-compatible power.
- **Transformer & Switchgear**:
  - Step up voltage to grid level (e.g., 13.8 kV, 69 kV) and integrate protection systems (circuit breakers, relays).
- **SCADA & Control Systems**:
  - Centralized monitoring for state-of-charge (SOC), temperature, and fault detection.
- **Grounding & Lightning Protection**:
  - IEEE 80-compliant grounding system for personnel and equipment safety.

---

### **5. Mechanical Engineering & Safety Systems**
- **Thermal Management**:
  - Active/passive cooling systems (e.g., HVAC, liquid cooling) to maintain battery temperature (20–30°C).
- **Fire Suppression**:
  - NFPA 855-compliant systems (e.g., aerosol suppressants, water mist, gas-based systems).
  - Firewalls and explosion vents in battery enclosures.
- **Ventilation**:
  - Prevent hydrogen buildup (for lead-acid/flow batteries) with forced-air ventilation.

---

### **6. Grid Interconnection**
- **Grid Compliance**:
  - Meet grid codes for voltage/frequency ride-through, harmonics (IEEE 1547, IEC 62933).
- **Interconnection Agreement**:
  - Coordinate with the grid operator (e.g., NGCP in the Philippines) for feasibility studies and approval.
- **Protection Coordination**:
  - Ensure anti-islanding, overcurrent, and arc-flash protection.

---

### **7. Construction & Commissioning**
- **Phased Construction**:
  - Install civil foundations, electrical infrastructure, and battery units sequentially.
- **Testing**:
  - Performance testing (capacity, efficiency), safety drills, and grid synchronization.
- **Commissioning**:
  - Validate SCADA communication, remote control, and compliance with operational standards.

---

### **8. Operations & Maintenance (O&M)**
- **Monitoring**:
  - Real-time tracking of SOC, temperature, and cycle life degradation.
- **Preventive Maintenance**:
  - Regular inspections of battery cells, cooling systems, and electrical connections.
- **Recycling/Repurposing**:
  - Plan for end-of-life battery disposal or second-life applications.

---

### **9. Regulatory & Risk Management**
- **Permitting**:
  - Secure permits for construction, environmental compliance, and fire safety.
- **Insurance**:
  - Cover risks like fire, equipment failure, and natural disasters.
- **Cybersecurity**:
  - Protect control systems from cyber threats (IEC 62443).

---

### **10. Financial & Sustainability Framework**
- **Cost Estimation**:
  - CAPEX (batteries, inverters, civil works) and OPEX (O&M, energy losses).
- **Revenue Streams**:
  - Ancillary services, energy arbitrage, or capacity contracts.
- **Sustainability**:
  - Carbon footprint reduction, use of recycled materials, and alignment with ESG goals.

---

### **Final Output: Integrated Design Document**
- Site layout drawings (CAD).
- Single-line diagrams (electrical).
- Piping & instrumentation diagrams (mechanical).
- Risk assessment and emergency response plan.

---

This framework ensures a **safe, efficient, and grid-compliant BESS** that meets technical, regulatory, and economic objectives. Collaboration between civil, electrical, and mechanical engineers, along with grid operators, is critical for success.

Thursday, February 6, 2025

In-Depth Comparison of Energy Storage Technologies

🔬 In-Depth Comparison of Energy Storage Technologies

Below is a detailed comparative analysis of the leading energy storage technologies for utility-scale applications, highlighting their technical performance, costs, scalability, and best use cases.


📊 Key Comparison Factors


💡 1. Lead-Acid Batteries

Best For:

  • Short-duration applications (voltage support, spinning reserve).
  • Small-scale backup energy storage.

Why Not?:

  • Short lifespan (1,000–2,000 cycles).
  • Low energy density, requiring more space than alternatives.
  • High maintenance requirements.

🔋 2. Lithium-Ion Batteries

Best For:

  • Fast-response grid applications (frequency regulation, peak shaving).
  • Renewable energy integration (storing excess solar/wind for later use).
  • Modular deployments (easily scalable).

Why Not?:

  • Thermal runaway risks require strict Battery Management Systems (BMS).
  • High material costs (cobalt, nickel, lithium).
  • Limited lifespan (~10,000 cycles max) compared to some alternatives.

🛢️ 3. Flow Batteries

Best For:

  • Long-duration energy storage (4–12+ hours).
  • Grid-scale renewable integration.
  • Deep discharge capability (100% Depth of Discharge without degradation).

Why Not?:

  • Expensive upfront costs ($200–800/kWh).
  • Large space requirements due to low energy density.
  • Complex liquid circulation systems require maintenance.

🔥 4. Sodium-Sulfur (NaS) Batteries

Best For:

  • Large-scale grid storage (6+ hour discharge).
  • Energy shifting applications (storing excess renewables for nighttime use).

Why Not?:

  • High-temperature operation (300°C–350°C) increases maintenance costs.
  • Safety concerns due to liquid sodium.
  • Limited market availability.

🌊 5. Pumped Hydro Storage

Best For:

  • Bulk energy storage at grid-scale.
  • Long-duration (6–12+ hours) energy shifting.
  • Decades-long lifespan (50+ years).

Why Not?:

  • Geographic constraints (requires elevation changes & reservoirs).
  • High initial capital investment ($100M+ for large projects).
  • Long construction times (5–10 years).

⚙️ 6. Flywheel Energy Storage

Best For:

  • Ultra-fast response times (milliseconds).
  • Frequency regulation & power quality improvement.
  • Low maintenance and long lifespan.

Why Not?:

  • Limited energy storage capacity (seconds to minutes).
  • Not suitable for long-term energy storage.
  • Higher upfront costs ($500–1,000/kWh).

💨 7. Compressed Air Energy Storage (CAES)

Best For:

  • Bulk renewable energy storage (multi-GWh possible).
  • Low-cost long-duration energy storage.
  • Large-scale load balancing.

Why Not?:

  • Geographic constraints (requires underground caverns).
  • Lower efficiency (50–70%) than battery storage.
  • High-pressure risks require robust containment systems.

⚖️ Final Recommendation: Which Technology is Best for Your Use Case?


🔮 Future Trends: Emerging Storage Technologies

  1. Solid-State Batteries: High energy density, safer than Li-ion.
  2. Hydrogen Storage: Converting excess electricity to hydrogen for long-term storage.
  3. Supercapacitors: Ultra-fast energy discharge for grid stability.
  4. Gravity-Based Storage: Using weight and elevation for energy storage.

💡 Key Takeaways

  1. No single storage technology is perfect—each has trade-offs in cost, efficiency, and scalability.
  2. Lithium-ion dominates short-duration storage, but flow batteries and pumped hydro are better for long-duration grid applications.
  3. Geographic constraints determine feasibility—some technologies (e.g., CAES, pumped hydro) require specific landscapes.
  4. Future innovations in solid-state batteries, hydrogen storage, and supercapacitors could change the energy storage landscape.

Technical Breakdown: Utility-Scale Energy Storage Technologies

🔬 Technical Breakdown: Utility-Scale Energy Storage Technologies

The research paper provides an extensive analysis of various energy storage technologies used in large-scale grid applications. Below is a detailed breakdown of the major storage technologies discussed, their advantages, limitations, and suitability for different grid applications.


1️⃣ Lead-Acid Batteries

Advantages:

  • Mature technology with decades of operational experience.
  • Low upfront cost compared to other battery technologies.
  • Recyclability: Over 98% of lead-acid batteries can be recycled, making them environmentally friendly.
  • Reliable performance for short-duration applications like spinning reserve and voltage regulation.

Limitations:

  • Short cycle life: Limited to around 1,000–2,000 cycles at 50% Depth of Discharge (DoD).
  • Low energy density: Requires large physical space for deployment.
  • Temperature sensitivity: Performance drops in extreme cold or heat.
  • High maintenance: Requires regular electrolyte refilling (unless using sealed VRLA variants).
  • Sulfation Issues: Improper charging leads to irreversible sulfation, shortening lifespan.

🔧 Best Grid Applications:

  • Backup power (short-term frequency regulation).
  • Voltage support at the end of the grid.
  • Spinning reserve to reduce fossil fuel generator load.

2️⃣ Lithium-Ion Batteries (Li-ion)

Advantages:

  • High energy density: Requires less space than lead-acid batteries.
  • Long cycle life: 4,000–10,000 cycles, depending on the chemistry.
  • Fast response time: Ideal for frequency regulation and peak shaving.
  • High efficiency (90–96%): Lower energy losses during charging and discharging.
  • Low self-discharge rate: Can store energy efficiently for long periods.
  • Modular design: Easy to scale up or down.

Limitations:

  • Safety concerns: Risk of thermal runaway, which can cause overheating or fires.
  • High upfront cost: More expensive than lead-acid batteries but costs are declining.
  • Material constraints: Uses cobalt, lithium, and nickel, which are subject to supply chain volatility.
  • Degradation over time: Performance deteriorates if exposed to extreme temperatures.

🔧 Best Grid Applications:

  • Grid frequency regulation & voltage support.
  • Peak demand shaving (storing excess solar/wind energy for later use).
  • Short-duration energy storage for renewable integration.

🔬 Common Li-ion Chemistries for Utility Storage:


3️⃣ Flow Batteries

(Vanadium Redox Flow Batteries - VRFB & Zinc-Bromine Flow Batteries)

Advantages:

  • Ultra-long lifespan: Can last 15–20 years with minimal degradation.
  • Scalable: Independent power (MW) and energy (MWh) scaling.
  • Deep discharge capability: Can operate at 100% Depth of Discharge (DoD) without damage.
  • Non-flammable & safe: No risk of thermal runaway.

Limitations:

  • Low energy density: Requires large tanks, making it impractical for small sites.
  • Higher upfront cost: More expensive than lead-acid and lithium-ion.
  • Complex system management: Requires fluid circulation & cooling systems.

🔧 Best Grid Applications:

  • Long-duration energy storage (4–12 hours).
  • Grid-scale renewable energy integration.
  • Microgrid applications for isolated areas.

4️⃣ Sodium-Sulfur (NaS) Batteries

Advantages:

  • High energy density and long lifespan (15 years+).
  • Excellent for large-scale grid storage.
  • High operating temperature (300°C–350°C) allows fast charging/discharging.

Limitations:

  • Requires high temperatures to remain operational.
  • Complex thermal management increases maintenance costs.
  • Safety risks due to liquid sodium.

🔧 Best Grid Applications:

  • Long-duration grid storage (6+ hours).
  • Large-scale peak shifting & load balancing.

5️⃣ Pumped Hydro Storage

Advantages:

  • Mature & widely used (99% of the world’s energy storage capacity).
  • High efficiency (~80%).
  • Massive energy capacity (ranging from hundreds to thousands of MWh).
  • Decades-long lifespan (50+ years).

Limitations:

  • Geographic dependency: Requires mountainous regions & water reservoirs.
  • High capital costs: Large upfront investment required.
  • Environmental concerns: Potential ecological impact on river systems.

🔧 Best Grid Applications:

  • Bulk energy storage for grid stability.
  • Renewable energy time-shifting (storing excess wind/solar energy for later use).
  • Supporting high renewable penetration grids.

6️⃣ Flywheel Energy Storage

Advantages:

  • Instant response time: Milliseconds-level reaction, making it ideal for frequency regulation.
  • Long cycle life (100,000+ cycles).
  • High power density: Can deliver high bursts of power.
  • No chemical degradation.

Limitations:

  • Short discharge duration (seconds to minutes).
  • Expensive compared to batteries.
  • Mechanical wear and maintenance required.

🔧 Best Grid Applications:

  • Short-term frequency regulation.
  • Grid power quality improvement.

7️⃣ Compressed Air Energy Storage (CAES)

Advantages:

  • Low cost per MWh compared to batteries.
  • Large-scale storage (multi-GWh possible).
  • Long lifespan (20+ years).

Limitations:

  • Requires underground caverns for air storage.
  • Lower efficiency (~50–70%) than batteries and pumped hydro.
  • Geographic constraints.

🔧 Best Grid Applications:

  • Bulk energy storage for large-scale renewables.
  • Grid balancing & peak shaving.

📊 Comparison of Energy Storage Technologies


💡 Conclusion

Different energy storage technologies serve different grid functions. Lithium-ion dominates short-term storage due to fast response and efficiency, while flow batteries, NaS, and pumped hydro are better for long-duration grid storage.

Would you like a specific technology comparison, or a deep dive into cost analysis?

Algorithmic Game Theory



This image illustrates the interdisciplinary academic foundations that are linked by algorithmic game theory. At the center of the triangle is algorithmic game theory, which is a field that combines tools and principles from multiple disciplines to analyze systems involving strategic interactions.

Key Areas and Their Interconnections:

  1. Statistics:

    • Provides foundational methods for analyzing data and modeling uncertainties.
    • Linked to machine learning for creating predictive models and algorithms.
  2. Machine Learning:

    • Involves algorithms that learn patterns and make predictions or decisions.
    • Connects statistics (for data insights) and computer science (for algorithm implementation).
  3. Computer Science:

    • Offers computational frameworks and algorithms necessary for implementing strategies.
    • Supports algorithmic game theory by providing the computational basis.
  4. Economics:

    • Explores human behavior, markets, and decision-making.
    • Ties to algorithmic game theory, which uses economic principles to study interactions and incentives.
  5. Econometrics:

    • Applies statistical methods to economic data for empirical validation.
    • Bridges economics and statistics.

Central Role of Algorithmic Game Theory:

Algorithmic game theory integrates these disciplines to study strategic behaviors in systems (e.g., auctions, markets, resource allocation). It applies algorithms to analyze and predict outcomes in systems where multiple entities interact with potentially conflicting objectives.

This diagram highlights how these fields are interconnected, with algorithmic game theory as a unifying hub.

Friday, January 31, 2025

Sekatan Teknologi ke Atas China Tidak Berkesan.

Pendahuluan.

Sekatan teknologi yang dikenakan oleh Amerika Syarikat (AS) ke atas China, terutamanya dalam eksport cip komputer berteknologi tinggi, sering dianggap sebagai strategi untuk mengekang kemajuan teknologi negara tersebut. Namun, kejayaan syarikat kecerdasan buatan (AI) China, **DeepSeek**, dalam menghasilkan model bahasa besar (LLM) yang kompetitif meskipun menghadapi sekatan, membuktikan bahawa langkah ini tidak berkesan. Malah, sekatan tersebut telah mencetuskan gelombang inovasi tempatan di China, mengubah halangan menjadi peluang untuk membangunkan teknologi alternatif yang lebih efisien.  

Kejayaan DeepSeek Menembusi Sekatan.

DeepSeek, syarikat AI yang berpangkalan di Hangzhou, berjaya mencipta **R1**, sebuah chatbot yang setanding dengan produk AS seperti ChatGPT, tetapi dengan kos pembangunan yang jauh lebih rendah (hanya AS$5.6 juta). Kejayaan ini dicapai meskipun AS menghalang akses China kepada cip terkini seperti H100 melalui sekatan eksport. Sebaliknya, DeepSeek menggunakan cip H800—versi lama yang masih dibenarkan dieksport sehingga akhir 2023—untuk melatih model AI mereka. Menurut pakar seperti Jeffrey Ding dari Universiti George Washington, sekatan ini memaksa syarikat China untuk mencipta algoritma lebih efisien, mengurangkan kebergantungan pada kuasa pengiraan tinggi. Ini menunjukkan bahawa sekatan teknologi tidak menghalang inovasi, malah mendorong pendekatan lebih kreatif.  

Polisi Sekatan Menjadi Pemangkin Inovasi China

Kisah kejayaan DeepSeek bukanlah yang pertama. Sebelum ini, syarikat gergasi teknologi China, **Huawei**, telah bangkit semula selepas sekatan AS dengan mengalihkan fokus kepada pembangunan sistem operasi HarmonyOS dan cip buatan sendiri. Polisi sekatan AS, yang bertujuan melambatkan kemajuan China, sebaliknya mencetuskan "kesan Sputnik"—istilah yang merujuk kepada kejutan teknologi Soviet pada 1957—di mana China membuktikan kemampuan mereka untuk mengejar bahkan menyaingi teknologi Barat. Seperti yang diakui Marc Andreessen, seorang pelabur terkemuka, kejayaan DeepSeek adalah "detik Sputnik" bagi AS, mendedahkan jurang strategi sekatan yang selama ini dianggap kukuh.  

Keterbatasan Sekatan dan Respons AS
 
Walaupun sekatan dilaksanakan untuk melindungi kepentingan teknologi AS, ia gagal menyekat kemajuan China dalam bidang AI. Malah, pakar seperti Samm Sacks dari Universiti Yale menegaskan bahawa kejayaan DeepSeek "menggugat anggapan lama" tentang keperluan kuasa pengiraan dan data yang besar untuk inovasi AI. Sebagai tindak balas, pentadbiran AS kini terpaksa mempertimbangkan langkah lebih radikal, seperti memperluas sekatan cip atau meningkatkan pelaburan domestik. Namun, seperti yang diingatkan Rebecca Arcesati dari MERICS, sekatan defensif semata-mata mungkin hanya akan mendorong lebih banyak negara untuk menyokong ekosistem AI China.  

Penutup

Sekatan teknologi AS ke atas China jelas tidak mencapai matlamat asalnya. Sebaliknya, ia menjadi pemangkin kepada inovasi tempatan yang lebih mampan dan efisien. DeepSeek dan Huawei adalah bukti nyata bahawa sekatan bukanlah penyelesaian untuk mengekang kemajuan teknologi sesebuah negara. Sebaliknya, AS perlu mengimbangi strategi dengan memperkukuh daya saing domestik sambil mengelakkan langkah yang boleh mencetuskan perlumbaan teknologi yang tidak sihat. Dalam dunia yang saling berkait, kerjasama dan persaingan sihat mungkin lebih efektif daripada sekatan sepihak yang hanya melahirkan lebih banyak "detik Sputnik".  

Rumusan

Kegagalan sekatan AS dalam menghalang kemajuan teknologi China mengajar kita bahawa inovasi tidak dapat dibendung melalui halangan politik. Sejarah membuktikan bahawa teknologi bersifat universal—sekatan hanya mempercepatkan proses penyesuaian dan kreativiti. Bagi mengekalkan kepimpinan global, negara perlu fokus pada pembangunan kapasiti sendiri, bukan sekadar menyekat kemajuan pihak lain.

Sputnik

**Sputnik** refers to the world's first artificial satellite, **Sputnik 1**, launched by the Soviet Union on **October 4, 1957**. Here's a detailed overview:

### Key Facts:
- **Name Meaning**: "Sputnik" translates to "satellite" or "fellow traveler" in Russian.  
- **Design**: A polished metal sphere (58 cm/23 inches in diameter) with four external antennas, weighing **83.6 kg**.  
- **Launch Vehicle**: Carried into orbit by an **R-7 Semyorka** rocket from Kazakhstan.  

### Mission Details:
- **Orbit**: Circled Earth every **98 minutes** at an altitude of about 250 km (155 miles).  
- **Signals**: Transmitted radio pulses at **20.005 and 40.002 MHz**, detectable globally for **21 days** until its batteries died.  
- **Duration**: Remained in orbit for **3 months** before burning up on re-entry.  

### Historical Context:
- **Cold War**: Marked the start of the **Space Race** between the USSR and the US, intensifying Cold War rivalry.  
- **International Geophysical Year**: Part of a global scientific initiative to study Earth and space phenomena.  

### Impact:
- **Sputnik Crisis**: Prompted the US to establish **NASA** (1958) and boost investments in STEM education and technology.  
- **Military Implications**: Demonstrated Soviet rocket capability, raising concerns about intercontinental ballistic missiles (ICBMs).  
- **Legacy**: Catalyzed advancements in space exploration, leading to milestones like the **Apollo Moon landings**.  

### Follow-Up Missions:
- **Sputnik 2** (November 3, 1957): Carried **Laika**, the first living creature (a dog) in orbit.  

### Cultural Significance:
- Symbolized technological prowess and shifted global perceptions of scientific leadership.  
- Visible from Earth, its "beep" became an iconic sound of the Space Age.  

Sputnik 1 remains a landmark achievement, reshaping geopolitics, science, and humanity's journey into space.

Wednesday, January 29, 2025

Temubual dengan pendiri DeepSeek

**Bahagian 1: Persaingan Harga dan Jurang Teknologi**  
**Waves:** Dari luar, pemotongan harga kelihatan seperti usaha merebut pengguna, seperti yang biasa berlaku dalam perang harga era internet.  

**Liang Wenfeng:** Merebut pengguna bukan tujuan utama kami. Kami menurunkan harga kerana, pertama, kos kami menurun semasa meneroka seni bina model generasi seterusnya. Kedua, kami percaya API dan AI perlu diakses dan mampu dimiliki oleh semua.  

**Waves:** Sebelum ini, kebanyakan syarikat China menggunakan seni bina Llama untuk aplikasi. Mengapa anda mula dari struktur model?  

**Liang Wenfeng:** Jika tujuannya hanya untuk aplikasi, menggunakan Llama adalah masuk akal. Tetapi destinasi kami ialah AGI (Kecerdasan Umum Buatan), jadi kami perlu mengkaji struktur model baru untuk mencapai keupayaan lebih tinggi dengan sumber terhad. Ini asas untuk model lebih besar. Selain itu, kecekapan latihan dan kos inferens Llama dianggarkan ketinggalan dua generasi berbanding teknologi antarabangsa.  

**Waves:** Dari mana jurang generasi ini berasal?  

**Liang Wenfeng:** Pertama, jurang kecekapan latihan. Keupayaan terbaik China mungkin memerlukan dua kali ganda kuasa pengiraan untuk hasil sama seperti teknologi antarabangsa. Kedua, jurang kecekapan data: kami perlu dua kali ganda data dan kuasa pengiraan. Gabungannya, kami perlukan empat kali ganda kuasa pengiraan. Tugas kami ialah menutup jurang ini.  

---

**Bahagian 2: Jurang Sebenar Bukan 1-2 Tahun, Tetapi Inovasi vs. Tiruan**  
**Waves:** Mengapa DeepSeek V2 mengejutkan Silicon Valley?  

**Liang Wenfeng:** Mereka terkejut kerana syarikat China menyertai permainan inovasi. Kebanyakan syarikat China hanya ikut trend, bukan mencipta.  

**Waves:** Tapi inovasi di China sangat mahal. Mengapa anda fokus pada penyelidikan, bukan komersialisasi?  

**Liang Wenfeng:** Kos inovasi tinggi, tetapi masalah China bukan kekurangan modal, tetapi keyakinan dan cara mengatur bakat untuk inovasi berkesan. Ekonomi China cukup besar—kini masanya untuk menyumbang, bukan sekadar menumpang.  

**Waves:** Syarikat gergasi seperti ByteDance dan Tencent lebih utamakan komersialisasi. Mengapa?  

**Liang Wenfeng:** Selama 30 tahun, kami hanya fokus pada keuntungan, mengabaikan inovasi. Inovasi memerlukan rasa ingin tahu dan hasrat mencipta—ini berkait dengan tahap ekonomi tertentu.  

**Waves:** Bagaimana anda membina "parit" (kelebihan kompetitif) jika inovasi anda dibuka sumber?  

**Liang Wenfeng:** Parit tertutup hanya sementara. Nilai kami terletak pada pasukan—rakan sekerja berkembang, mengumpul pengetahuan, dan membentuk budaya inovasi. Ini parit sebenar kami.  

---

**Bahagian 3: Lebih Banyak Pelaburan ≠ Lebih Banyak Inovasi**  
**Waves:** Adakah anda akan tutup sumber seperti OpenAI?  

**Liang Wenfeng:** Tidak. Kami percaya ekosistem teknikal kuat lebih penting.  

**Waves:** Ada rancangan pembiayaan atau IPO?  

**Liang Wenfeng:** Tiada rancangan pembiayaan jangka pendek. Masalah utama kami bukan modal, tetapi sekatan cip AS.  

**Waves:** Kenapa tidak fokus pada aplikasi?  

**Liang Wenfeng:** Tahap ini adalah ledakan inovasi teknologi, bukan aplikasi. Kami ingin cipta ekosistem di mana industri gunakan teknologi kami. Jika perlu, kami boleh bangunkan aplikasi, tetapi keutamaan tetap pada inovasi.  

**Waves:** Mengapa pelanggan pilih DeepSeek berbanding syarikat besar?  

**Liang Wenfeng:** Masa depan akan ada pembahagian tugas khusus. Syarikat besar mungkin tidak paling sesuai untuk inovasi berterusan.  

---

**Bahagian 4: Pasukan Muda dengan Budaya Inovasi**  
**Waves:** Siapa di sebalik DeepSeek V2?  

**Liang Wenfeng:** Kebanyakannya graduan universiti terkemuka, calon PhD, dan anak muda berusia 20-an. Tiada "ahli silap mata"—hanya bakat tempatan yang dilatih sendiri.  

**Waves:** Bagaimana inovasi MLA tercetus?  

**Liang Wenfeng:** Idea berasal dari minat peribadi penyelidik muda. Proses pelaksanaan mengambil masa berbulan dengan kerjasama pasukan.  

**Waves:** Bagaimana struktur pengurusan longgar ini berfungsi?  

**Liang Wenfeng:** Semua boleh akses GPU atau bekerjasama tanpa hierarki. Kami cari bakat berasaskan semangat dan rasa ingin tahu—bukan pengalaman tradisional.  

**Waves:** Adakah inovasi bergantung pada nasib?  

**Liang Wenfeng:** Inovasi bermula dengan keyakinan. Lembah Silikon berani mencuba—di China, keyakinan ini kurang. Kami percaya generasi muda akan ubah ini.  

---

**Bahagian 5: Semua Kaedah Lama Akan Usang**  
**Waves:** Apa fokus utama anda kini?  

**Liang Wenfeng:** Menyelidik model generasi seterusnya. Masih banyak masalah belum selesai.  

**Waves:** Bagaimana dengan model keuntungan masa depan?  

**Liang Wenfeng:** Corak perniagaan lama tidak relevan. Bincang model keuntungan AI dengan logik internet seperti "menjual ais semasa Zaman Batu"—ia tidak berguna.  

**Waves:** Adakah ekonomi lemah akan sekat penyelidikan asas?  

**Liang Wenfeng:** Tidak. Penstrukturan semula industri China akan lebih bergantung pada inovasi teknologi. Apabila peluang cepat kaya hilang, orang akan lebih fokus pada inovasi sebenar.  

**Liang Wenfeng (kesimpulan):**  
"Saya dibesarkan di bandar kecil Guangdong. Dulu, ramai percaya belajar tidak berguna. Tapi kini, mereka sedar peluang mudah sudah tiada. Masa depan milik inovasi keras—kami perlu contoh dan proses pendidikan sosial."  

---  
*Diterjemahkan dari wawancara asal oleh Liang Wenfeng, CEO DeepSeek, dalam chinatalk.media.*